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A numerical method is developed for computing peri- 
odic, three-dimensional, vortical flows around isolated air- 
foils. The unsteady velocity is split into a vortical compo- 
nent which is a known function of the upstream flow condi- 
tions and the Lagrangian coordinates of the mean flow, and 
an irrotational field whose potential satisfies a nonconstant- 
coefficient, inhomogeneous, convective wave equation. So- 
lutions for thin airfoils at zero degrees incidence to the mean 
flow are presented in this paper. Using an elliptic coordi- 
nate transformation, the computational domain is trans- 
formed into a rectangle. The Sommerfeld radiation con- 
dition is applied to the unsteady pressure on the grid line 
corresponding to the far field boundary. The results are 
compared with a Possio solver, and it is shown that for max- 
imum accuracy the grid should depend on both the Mach 
number and reduced frequency. Finally, in order to assess 
the range of validity of the classical thin airfoil approxima- 
tion, results for airfoils with zero thickness are compared 
with results for airfoils with small thickness. 

I. Introduction 
Turbomachinery and propeller blades usually operate 

in a flow environment where upstream nonuniformities are 
convected downstream and induce unsteady forces which 
cause forced vibrations and radiate noise into the far field. 
Among the sources of such upstream vortical disturbances 
are atmospheric turbulence, instdlation effects, inlet distor- 
tion, and viscous wakes. For rotating blades, the unsteady 
disturbances will be periodic in time with a fundamental 
frequency equal to the blade passing frequency, and will 
appear in the blade frame of reference as propagating vor- 
ticity waves that are called gusts. 

The attempt to analyze such unsteady vortical flow 
fields goes back to the early days of powered flight when en- 
gineers sought to deal with vibration problems that arose 
due to higher flight speeds. For simplicity, investigators 
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at that time considered flat plate airfoils a zero mean inci- 
dence with small amplitude, harmonic velocit disturbances 
imposed upstream. In this case the underlyin mean flow 
is a uniform parallel flow, and the vorticity \ wave are con- 
vetted by the mean flow without distortion. The %and& 
mathematical treatment consisted of splitting the uniteady 
velocity field into solenoidal and irrotational (poteqtinl) 
components. The solenoidal component is a known funckion 
of the upstream disturbance and represents a purely con- 
vected vorticity wave which is completely decoupled from 
the steady state aerodynamics. The unsteady potential is 
coupled to the vortical component only through the air- 
foil boundary condition, and satisfies a constant coefficient, 
homogeneous, convective wave equation, which for incom- 
pressible flows reduces to Laplace's equation. The analyt- 
ical tools used by researchers at that time were primarily 
the simple concepts of circulation theory and complex vari- 
able techniques. Sears * derived an analytical solution for 
the unsteady lift on a rigid airfoil passing through a vorti- 
cal sinusoidal gust in incompressible flow. When the flow 
is compressible, the mathematical problem can be formu- 
lated in the form of an integral equation known as Possio's 
equation '. Numerical results are usually obtained by col- 
location techniques. 

For flows around real airfoils with thickness, camber, 
or angle of attack, the mean flow is no longer a uniform 
parallel flow. Goldstein and Atassi showed that in this 
case the oncoming vortical waves (gusts) are distorted as 
they are convected by the mean flow. The distortion causes 
a significant vdriation in both the amplitude and phase of 
the unsteady velocity field associated with the gust. Gold- 
stein and Atassi and Atassi derived explicit analytical 
formulas for the unsteady lift of an airfoil subject to a lon- 
gitudinal and transverse gust in incompressible flow. Their 
results show that the gust distortion has a significant effect 
on the airfoil unsteady lift. 

For subsonic and transonic flows about lifting airfoils, 
the steady mean flow is usually obtained numerically. The 
more complex mathematical problem of unsteady flows also 
requires numerical computations. There are two basic di- 
rections that a computational approach may take. The first 
of these is the so-called primitive variable approach wherein 
a system of governing partial differential equations, such as 
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the Euler or Navier-Stokes equations, are solved along with 
certain specified boundary conditions. In recent years a 
considerable amount of work has been done in this area 
and much progress has been made. This approach has 
been used by a number of investigators to calculate numer- 
ical solutions to complex unsteady, vortical flow problems 
such as rotor-stator or wake-rotor interaction. References 
5 through 8 represent some of the recent work in this area. 
The main disadvantage of the primitive variable approach 
is that a complete system of unsteady, nonlinear partial dif- 
ferential equations must be solved. Large computer mem- 
ory and lengthy computational times are normally required, 
and uncertainties about far  field boundary conditions for 
time dependent calculations governed by nonlinear equa- 
tions leave some question about the accuracy of the so- 
lutions. More progress needs to be made in the areas of 
efficient, accurate algorithms and accurate far field bound- 
ary conditions for nonlinear problems to make the primitive 
variable approach more generally useful. 

The alternative to the primitive variable approach is a 
linearized approach which makes use of the so-called "rapid 
distortion" approximation. For mean potential flows with 
small amplitude vortical and entropic disturbances imposed 
upstream, the unsteady velocity field can be split into the 
sum of a known vortical component and an unknown po- 
tential component that satisfies a linear, nonconstant-coef- 
ficient, inhomogeneous, convective wave equation. Details 
concerning the derivation of this equation are found in ref- 
erences 9 and 10. 

The major limitation of the linear approach is that it is 
valid for only small amplitude disturbances where the mag- 
nitude of the unsteady velocity perturbations is an order of 
magnitude less than the magnitude of the mean velocity. 
However, for many pracitcal flows, and in particular many 
turbomachinery flows, this condition is satisfied so that the 
limitation is not serious. 

On the other hand, the advantages of a linear scheme 
over a nonlinear approach are significant. Among the ad- 
vantages are the fact that it is far simpler to derive stable, 
accurate differencing schemes for a single linear equation 
than for a nonlinear system of equations, and the compu- 
tational time required to obtain a solution can be up to an 
order of magnitude less. In addition, it is easier to derive far  
field boundary conditions that are accurate and correctly 
model the physics of the unsteady flow. Since incorrect or 
inaccurate far field boundary conditions can lead to large 
errors in the solution of an unsteady calculation, this is 
indeed a major advantage. 

The authors are in the process of implementing a gen- 
eral numerical scheme which can solve arbitrary, small am- 
plitude, periodic vortical flows about isolated airfoils with 
complex geometry for a large range of Mach numbers and 
reduced frequencies. In a previous paper we presented 
the linear aeordynamic theory for such flows, and showed 
that the most general upstream vortical disturbances can 
be represented as the sum of three-dimensional vorticity 
waves in the blade frame of reference. Numerical results 

were presented for the special case of thick, symmetric air- 
foils with imposed upstream three-dimensional, harmonic 
velocity disturbances. However, as our major purpose in 
(111 was to present the formulation of the problem, we 
did not provide the details of our numerical scheme. In 
the present paper we present the details of the numerical 
scheme that has been developed. For simplicity, and also 
to assess the accuracy of the scheme, we concentrate on the 
thin airfoil problem for which there are known solutions 
with which comparison can be made. The differences be- 
tween the general case of distorted vortical flows versus the 
classical thin airfoil case where there is no distortion will 
also be pointed out. In addition, we discuss specific nu- 
merical difficulties such as the choice of appropriate grids 
and coordinate transformation, far field boundary condi- 
tion, and linear solution technique. In section I1 we present 
the mathematical formulation of the boundary value prob- 
lem for the general case and show the simplifications that 
result from the thin airfoil approximation. In section I11 
we describe our numerical scheme, and in Section IV we 
present comparisons between computed results and known 
solutions to the classical problems. We also present com- 
parisons between results for flat plate airfoils and airfoils 
with small thickness in order to assess the range of validity 
of the thin airfoil approximation. 

11. Mathematical Formulation of the Boundary Value Problem 

Governing Equation 

Consider a two-dimensional airfoil with chord length c 
placed at  nonzero incidence in a flow with uniform upstream 
velocity U, in the 11 direction. Far upstream, let ii,-be a 
small amplitude, sinusoidal gust of the form & i z . ( F - ' u - f )  

which is imposed on the flow (See Figure 1). Here a' = 
(alra2,a3), where the amplitude I.'/ satisfies I.'] << Urn, 
IC = ( k l , k ~ , k 3 )  is the wave number vector which specifies 
the direction of propagation of the gust, and 7 is a unit 
vector in the 11 direction. We also assume the fluid to be 
an ideal gas which is inviscid and non-heat conducting, and 
require a'. IC = 0 to satisfy the continuity equation. Since 
we consider periodic disturbances, u', can be considered its 
a single Fourier component of the upstream disturbance. 

We assume that the velocity field can be represented 

-. 

+ 

by 

where Uo(Z') is the mean potential flow and t i ( F , t )  repre- 
sents the small, unsteady part of the velocity field. It is 
shown in [9] and [lo] that C(Z, , t )  may be decomposed into 
the sum of a known vortical component and an un- 
known potential component ed, so that 

l7(5, t )  = &(F)  + G(F, t )  (2.1) 
4 

(2.2) 

The vortical component ~ R )  is essent,ially a function of the 
mean flow Lagrangian coordinates and their spatial gradi- 
ents. In the case of thin, uncambercd airfoils at zero tie- 
grees incidence, however, the unsteady velocity decouplcs 
from the mean flow and i;cR) reduces to Cm. 
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The potential 4 satisfies the convective wave equation 

I 
I 
i 

Do 1 Dod 1 - 1 -  
Dt co2 Dt PO Po 
-( - -) - -V.  (PO+$)  = -V. (podR’) (2.3) 

where 3 is the convective derivative associated with the 
mean flow, and co and po are, respectively, the mean flow 
speed of sound and density. The unsteady perturbation 
pressure is given by 

In the general case where the mean flow is nonuniform, 
the coefficients of the equation and its source term depend 
strongly on the mean flow quantities. However, for thin 
airfoils in a uniform parallel flow, the coefficients become 
constant and the source term vanishes. In this case the 
equation reduces to 

which is the convective wave equation for thin, unloaded 
airfoils in a uniform mean flow. Note that in the incom- 
pressible case the equation reduces to Laplace’s equation. 

Boundarv Conditions 

At the airfoil surface the boundary condition is the 
usual requirement that the normal velocity component van- 
ish. For the general case this leads to the requirement that 
(ti( R, + ed). 6 = 0 or = -dR) . n’. For a flat plate airfoil 
at zero degress angle of attack this simplifies to 

or 

(2.7) a4 - - a 2 e i k l ( r l - ~ , t ) + i ~ J z 3  

ax2 
for - 2  5 21 5 2 ,  and 1 2  = 0. 

In the wake the pressure is continuous, but 4 has a 
discontinuity A6 due to the unsteady circulation about the 
airfoil. Applying (2.4) on each side of the vortex sheet 
behind the airfoil leads to 

Do 
Dt 

Finally, in the far field 4 should satisfy 

(2.8) -(Ad) = 0 

for x1 > $,x2 = 0. 

ef$+o as x1-+-00 (2.9) 

With the condition that 4 is continuous at  the trailing 
edge, equation (2.5) with conditions (2.7) - (2.9) completely 
defines the mathematical formulation for the aerodynamic 
response of a thin airfoil to a sinusoidal gust. For a more 
detailed discussion of the mathematical formulation of the 
gust response problem, the reader may consult reference 
(12). 

111. Numerical Scheme 

Frequencv Domain Amroach 

and co by U,. With this nondimensionalization, equation 
2.5 and boundary conditions 2.7 - 2.9 become 

D2 6 AI2-  - v24 = 0 Dt2 

for 11 > 1, x2 = 0 (3.3) 
D -(Ad) = 0 Dt 

e++o as x1-‘-00 (3.4) 

- 2Fm, where Y is the angular frequency of the upstream dis- 
where = $ + &. The normalized wave number kl = 

turbance, is commonly referred to as the reduced frequency. 
In attempting to solve the boundary value problem 

(3.1) - (3.4) numerically, there are two basic directions that 
one can take - the time domain approach or the frequency 
domain approach. The authors have chosen to work in 
the frequency domain and so our discussion will be lim- 
ited to that particular approach. It should be pointed out 
that for mathematical convenience the classical work on 
the thin airfoil unsteady flow problems was also carried out 
in the frequency domain. By using this approach along 
with a suitable coordinate transformation, equation (3.1) 
can be reduced to a Helmholtz equation and thus consider- 
able mathematical simplification is obtained. 

In order to transform into the frequency domain and 
reduce equation (3.1) to a Helmholtz equation the following 
transformation of coordinates is introduced. 

and 

(3.5b) 

With this change of variables equation (3.1) reduces to 

which is a Helmholtz equation in the transformed “Prandtl 
Glauert” plane. Boundary conditions (3.2) - (3.4) have aiso 
been modified so that they become 

for x > 1, y = o  

(3.9) V ~ + O  as x + - m  

Equation (3.6) together with boundary conditions (3.i) - 
(3.9) represent the frequency domain formulation of the 
boundary value problem (3.1) - (3.4). 

In what follows we assume that all lengths have been 
by fla’l, a’by la’l, and U, normalized by t ,  time by &, 
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Numerical Method i % ( x - I )  A 9  = Ap,,,,e B , I > 1, y = 0 ,  (3.13) 

While equation (3.6) represents a significant mathe- 
matical simplification over equation (3.1), the independent 
variables (XJ) of the Prandtl Glauert plane are not ideally 
suited coordinates for numerical computations. A transfor- 
mation of the independent variables is needed which will 
provide adequate resolution of the flow field near the airfoil 
and also provide a distribution of grid points in the far field 
which is suitable for acoustic wave propagation and the im- 
plementation of far field boundary conditions. To satisfy 
these requirements, we introduce elliptic coordinates (7, () 
with the transformation 

I = cos(r7)cosh(s() (3. loa) 

y = sin(sq)sinh(x(). (3.10b) 

Equation (3.6) becomes 

$+$+ 
~~[(v) '  - ($)'][sin2(r7) + sinh'(r()]p = O J 

and boundary conditions (3.7) - (3.9) are modified accord- 
ingly. 

In order to obtain numerical solutions to equation 
(3.1 1) and its associated boundary conditions, we discretize 
the computational domain and employ finite differences to 
represent the governing equation and boundary conditions. 
The governing equation itself is modelled using the stan- 
dard, five point central differencing scheme which is second 
order accurate in both 7 and (. 

The airfoil boundary condition (3.7) has been trans- 
formed under the change of variables (3.10) to 

(3.12) 

for 0 < 7 < 1 ,  ( = O ,  

and is represented by four-point, third order accurate, one- 
sided differencing. 

It should be pointed out that due to the symmetry of 
the boundary value problem (3.1) - (3.4) it is necessary to 
solve (3.11) and its associated boundary conditions only in 
the upper half plane. The function cp  is an odd function 
with respect to y, and so we impose the condition cp  = 0 
on the strcamline ahead of the airfoil. This corresponds 
to the line q = 1, ( 2 0 in the computational plane. At 
the trailing edge point, we impose the Kutta condition, 
i.e., the unsteady velocity is finite. Since the Jacobian of 
transformation (3.10) vanishes at this point, this requires 
that = 0 at 7 = 0, ( = 0. This condition is implemented 
using four-point, one-sided differencing. 

In the wake behind the airfoil, 9 is not continuous but 
must satisfy a jump condition determined by the continuity 
of the unsteady pressure. By integrating equation (3.8), one 
obtains 

where the subscript t.e. denotes qu'antities evaluated at  the 
trailing edge. A Y ~ . ~ .  is determined by Kelvin's theorem of 
conservation of the total circulation in the flow. This is 
satisfied by assuming that kl has a small positive imaginary 
part to ensure convergence at infinity. Since 9 is an odd 
function of y, cp  = $A(P for y > 0. Expressing this result in 
terms of 7 and ( one obtains (3.14). 

9 = 9t.e.e i q [ c o s h (  4 rrc)-l] 7 = 0 ,  ( > 0 (3.14) 

To complete the formulation of the boundary value 
problem, it is only necessary to impose a condition for grid 
points on the far field boundary. While condition (3.9) 
expresses the mathematical requirement that '?p -+ 0 at  
infinity, applying this condition on a boundary at a finite 
distance in the computational domain would impose a re- 
flecting boundary condition which will not allow outgoing 
acoustic waves to leave the computational domain. The 
reflected acoustic waves will propagate inwards and may 
cause cause large errors in the solution. It is essential, there- 
fore, to have a radiation type boundary condition which will 
allow outgoing waves to leave the solution domain. More- 
over, the radiation condition should be applied to a contin- 
uous flow variable such as the pressure. The authors have 
implemented a variety of radiation conditions including a 
series expansion for 'p, a Sommerfeld radiation condition on 
c p ,  and a Sommerfeld radiation condition on the pressure p. 
While each approach gave a good near field solution, only 
the pressure radiation condition gave both a good near field 
solution and correct far field acoustics. 

It can be shown that the Sommerfeld radiation condi- 
tion applied to the pressure is given in operator notation 
by 

where x = r cos@, y = r sin0. Neglecting $6 terms, this 
reduces to 

This condition is applied for all grid points such that 0 < 
7 < 1, ( = and is implemented using four point, 
one-sided differencing. 

Solution Techniaue and Grid Selection 

Obtaining the solution to the finite difference equations 
representing equation (3.11) and its associated boundary 
conditions requires solving a large matrix equation for the 
unkown solution values v , , ~ .  While the matrix has a block 
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structure, it is not block tridiagonal due to the wake bound- 
ary condition (3.14), so that standard block solvers cannot 
be used. Experience has also shown that standard itera- 
tive solvers have convergence problem due to the fact that 
the governing equation is a Helmholtz equation with Mach 
number and wave number dependency. In light of these 
difficulties, a direct, general purpose, sparse matrix solver 
was developed which stores only the nonzero entries of the 
matrix, and performs the elimination with or without piv- 
oting. The typical number of equations to be solved varied 
from 2,000 to 4,000, with solution times ranging from 15 to 
200 seconds on a Cray X/MP, depending on the Mach num- 

d reduced frequency. Pivoting during the elimination 
has een found to be unnecessary. r The final issue to be discussed in regard to our numer- 
ical scheme is the method of grid selection. Because the 
gust problem is essentially a wave propagation problem, it 
is necessary to ensure that for any given calculation the grid 
spacing is such that the waves can be accurately resolved. 
This requires having sufficient spacing to resolve both the 
airfoil boundary condition (3.12) and the wake boundary 
condition (3.14). Experience has shown that the spacing in 
the direction should be uniform near the airfoil but in the 
far field should be chosen so that the argument of the ex- 
ponential function in (3.14) should vary by equal fractional 
increments of K, say z ,  for example, for maximum accuracy. 
This requires the ( spacing to depend on both kl and M. In 
addition, the accuracy of the far field boundary condition 
(3.16) depends upon the reduced frequency, the Mach num- 
ber, and the distance R to the far field boundary in such 
a way that the product VR should remain large. This 
requires the location of the outer boundary to be a function 
of kl and M. We conclude on the basis of these observations 
that for accurate calculation of a complete range of Mach 
numbers and reduced frequencies in the frequency domain 
formulation, the unsteady grid must be determined as a 
function of both Mach number and reduced frequency. 

IV. Results And Discussion 

Analvsis of Results 

To validate our numerical scheme we calculate solu- 
tions to the classical thin airfoil vortical flow problems and 
compare the numerical results with known solutions. For 
purposes of this comparison we define the unsteady re- 
sponse function 

where L' is the unsteady lift. Comparison will be made for 
flows with hlach numbers of . l ,  .5, and .8, and with reduced 
frequencies that range from 0 to 4.01. Sample grids used 
during the calculation are shown in Figures 2 thrqugh 5. 

In Figure 6 we compare the computed unsteady re- 
sponse function with the Sears solution for the case of a flat 

plate airfoil in a transverse gust (a2 = 1, a1 = a3 = kz = 
k3 = 0) at a Mach number of .l. The reduced frequency 
values used for this and all other calculations are shown in 
Table I. The point on the plot which is on the real axis 
and furthest to the right corresponds to the quasi-steady 
case in which kl = 0, and the other ICl values correspond in 
order to the other points along the curve. The agreement 
between the numerical results and the Sears solution is ex- 
cellent except for a small discrepancy at  the high frequency 
end. 

Figures 7 and 8 show plots for the case of a flat plate 
airfoil in a transverse gust with a .5 and .8 Mach number, 
respectively. Again, the agreement between the numerical 
and analytical results is quite good. Note also that the 
effect of the Mach number is to increase the magnitude of 
the unsteady response for the low frequencies and decrease 
it for the high frequencies. 

As mentioned previously, the grids used for the compu- 
tations are determined as a function of Mach number and 
reduced frequency. Figures 9 through 11 show the effect of 
calcqlating the results on grids independent of k,. For each 
case shown, the same grid was used for all frequencies in 
the calculation. The grid used for each Mach number was 

the one normally used only for the highest frequency case. 
By using the grid for the highest frequency, it was assured 
that the grid resolution for the lower frequencies would be 
more than adequate. But as the results show, the accuracy 
of the calculation is not nearly as good as when the grid is 
determined as a function of k1. This is the result of keeping 
the far field boundary fixed, rather than adjusting it with 
frequency. Note that as the Mach number increases, the 
agreement becomes progressively worse. 

In figures 12 through 14 we compare computed re- 
sults with results from a Possio solver for three dimensional 
gusts. The conditions on the gust wave number parameters 
are shown below the plot. As in the case of the transverse 
gust, the point on the plot which is on the real axis and 
furthest to the right corresponds to kl = 0, and the other 
kl values correspond in order to the other points along the 
curve. The agreement is in general very good. The small 
discrepancy in the results for the .8 Mach number case is 
due to a change in sign of the term [( v)' - (?)?I which 
multiplies 9 in equation (3.11). The sign change occurs at 
ICl = 0.332. For reduced frequencies near 0.332 the solution 
to the problem is very sensitive to small changes in kl so 
that it becomes more difficult to obtain accurate numerical 
solutions. 

To complete our discussion of the the thin airfoil gust 
response problem, and to assess the range of validity of 
the thin airfoil approximation, we present comparisons be- 
tween calculations for flat plate airfoils with zero thickness 
and Joukowski airfoils with 3% thickness. For airfoils with 
nonzero thickness it is necessary to solve the full governing 
equation (2.3) and boundary conditions modified to take 
into account the nonuniformities in the mean flow. For de- 
tails concerning the solution of equation (2.3) for airfoils 
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w i t h  tliickness, the reader should consult [ll]. Compar- REFERENCES 
isons are rnnclo for I-D (transverse), 2-D, and 3-D gusts, 

of J and .6. See Figures 15 through for ~~~l~ 1. Sears, W. R.9 ‘‘Some Aspects of Non-stationary -Airfoil 
Theory and Its Practical Applications,” J. Aero. Sci., 

An analysis of the results indicates that the thickness 
has neglibible effect when the flow is incompressible, except 
for the 2-D case for reduced frequencies above about 2.0, 
where the magnitude of the response has been reduced by 
about 20%. For the .6 Mach number case, the thickness 
has a significant effect on the response function for both 
the 1-D and 2-D cases. For the 1-D case the effect of the 
thickness is to increase the magnitude of the response by 
about 2% at the low frequencies and decrease it by about 
10% at the higher frequencies. For the 2-D case the effect 
is primarily limited to the higher frequencies and amounts 
to a decrease of about 15%. 

l 

Conclusion 

We conclude on the basis of the excellent agreement 
in the results that have been presented that the numerical 
scheme which has been developed can calculate with high 
accuracy the solution to the thin airfoil, unsteady vortical 
flow problems for a large range of Mach numbers and re- 
duced frequencies. hdoreover, the scheme gives not only a 
good near field solution but also provides an accurate solu- 
tion in the far field from which the acoustics can be readily 
calculated. The key ingredients in the scheme include the 
transformation into elliptical coordinates, determination of 
the grid as a function of the Mach number and reduced 
frequency, implementation of a radiation condition for the 
pressure in the far field, and the development of a direct, 
storage efficient sparse matrix solver which can be used for 
sparse matrices of arbitrary structure. 

The extension of our method to more general flows 
is relatively straightforward. A future paper will discuss 
the specific details of this extension, and also present nu- 
merical results for periodic, vortical flows past airfoils with 

I arbitrary geometry. 
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TABLE I .  - REDUCED FREQUENCY VALUES FOR 
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FIGURE 1. - AIRFOIL I N  A THREE-DIRENSIONAL GUST. 
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FIGURE 3 .  - COMPUTATIONAL GRID I N  THE PHYSICAL PLANE 
FOR M = .1. kl = .1. 
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FIGURE 2. - COMPUTATIONAL GRID I N  THE TRANSFORED 
PLANE FOR f i  = .l. kl - -1. 
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FIGURE 4 .  - COMPUTATIONAL GRID I N  THE TRANSFORMED 

UNSTEADY L I F T  

I 0 PRESENT CALCULATION 

-.SO 
.5 0 . 5  1 .o 1 . 5  2.0 

REA1 I IFT 

FIGURE 6 .  - CORPARISON L T W E L N  T t i t  C0MPllTF.D UNSTEADY 
RESPONSt FUNCTION OF A F L A i  PI ATE I N  A TRANSVERSE 
GUST AT M = 0.1 AND THE SEARS SOLUTION. 
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FIGURE 8. - COMPARISON BETWEEN THE COMPUTED UNSTEADY 
RESPONSE FUNCTION OF A FLAT PLATE A I R F O I L  I N  A 
TRANSVERSE GUST AT M = 0.8 AND A POSSIO SOIVER. 
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FIGURE 5 .  - CORPUTATIONAL GRID I N  THE PHYSICAL PLANE 
FOR M = .5. k l  = 3.0. 
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FIGURE 7. - COMPARISON BETWEEN THE COMPUiED UNSTEADY 
RESPONSE FUNCTION OF A FLAT PLATE A I R F O I L  I N  A 
TRANSVERSE GUST AT M = 0.5 AND A POSSlO SOLVER. 
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FIGURE 9. - COMPARISON BETWEEN THE COMPUTED UNSTEADY 
RESPONSE FUNCTION OF A FLAT PLATE A I R F O I L  I N  A 
TRANSVERSE GUST AT M = 0.1 AND THE SEARS SOLUTION. 
THE UNSTEADY GRID IS THE SAME FOR ALL k,. 
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FIGURE 10. - C W A R I S O N  BETWEEN THE C W U T E D  UN- 
STEADY RESPONSE FUNCTION OF A F L A T  PLATE A I R F O I L  
I N  A TRANSVERSE GUST AT N = 0.5 AND A POSSlO SOL- 
VER, THE UNSTEADY G R I D  IS THE W E  FOR ALL k1. 
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FIGURE 11. - CONPARISON BETWEEN THE COMPUTED UNSTEADY 
RESPONSE FUNCTION OF A F L A T  PLATE A I R F O I L  I N  A TRANS- 
VERSE GUST AT N = 0.8 AN0 A POSSlO SOLVER. THE UN- 
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FIGURE 12. - CONPARISON B E M E N  THE C W U T E D  UN- 
STEADY RESPONSE FUNCTION OF A F L A T  PLATE A I R F O I L  
I N  A THREE-DIENSIONAL GUST A T  N = p . l  AND A POS- 

2 7  SI0 SOLVER. k 3  = 0.442. lzl = 1, = - - ,,e k l  = 
1 
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FIGURE 13. - COMPARISON BETWEEN THE C W U T E D  UN- 
STEADY RESPONSE FUNCTION OF A FLAT PLATE A I R F O I L  
I N  A THREE-DINENSIONAL GUST AT M = 0.5 AND A 
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FIGURE 14. - C W A R I S O N  BETWEEN THE CONPUTED U l T E A D Y  
RESPONSE FUNCTION OF A F L A T  PLATE A I R F O I L  I N  A 
THREE-DIENSIONAL GUST AT R = 0.8 AND A POSSIO SOL- 
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-- 
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FIGURE 15.- C W A R I S O N  BETWEEN THE COMPUTED UNSTEADY 
RESPONSE FUNCTION OF A F L A T  PLATE A I R F O I L  AND A 
3 PERCENT THICK JOUKOWSKI A I R F O I L  I N  A ONE-DIMEN- 
SIONAL GUST AT N = 0.1. 
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FIGURE 17. - C W A R I S O N  BETWEEN COMPUTED UNSTEADY 
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FIGURE 18. - C W A R I S O N  B E N E N  COMPUTED UNSTEADY 
RESPONSE FUNCTION O f  A F L A T  PLATE A I R F O I L  AND A 
3 PERCENT THICK JOUKOWSKI A I R F O I L  I N  A ONE-DIMEN- 
SIONAL GUST AT M = 0.6. 
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FIGURE 19. - C W A R I S O N  BETWEEN COMPUTED UNSTEADY 
RESPONSE FUNCTION OF A F L A T  PLATE A I R F O I L  AND A 
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